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SUMMARY

In the present study, a method is developed to incorporate neural network models for
material response into nonlinear elastic truss analysis. Different feedforward network configura-
tions are developed to assess the accuracy of neural network modeling of nonlinear material re-
sponse. In addition to this, a scheme based upon linear interpolation for material data, is also
implemented for comparison purposes.

It is found that the neural network approach can yield very accurate results if used with
care. For the type of problems under consideration, it offers a viable alternative to other mate-
rial modeling methods.

INTRODUCTION

It has been an ongoing effort to create machines which are capable of exhibiting intelligent
behavior. The research in the Artificial Intelligence (Al) area is directed to achieve this goal.
The traditional Al based approaches lead to the. development of Expert Systems. They are use- -
ful in cases where a given problem can be specified in the form of well defined rules. By using
symbolic logic useful inferences can be drawn from the rules data base by following standard
search techniques. However, this approach was not very successful in pattern recognition tasks
where the available information is noisy or incomplete. :

Neural networks (NN), inspired by the research-in cognitive and biological sciences in the
functioning of the brain have provided an alternative approach to the solution of pattern recog-
nition tasks, such as text to speech synthesis (ref. 1), image compression and processing (ref. 2),
and nonlinear signal processing (ref. 3). Several neural network models have been suggested.
Hopfield (ref. 4) was successful in applying network approach for a class of optimization prob-
lems. One of the most popular neural network models is based upon the studies of Rumelhart,
Hinton, and Williams (ref. 5). It is a multi-layered feedforward network, in which learning is
accomplished by backpropagation algorithm. It has been used extensively in solving a wide
variety of problems. The computational NN models resemble the biological model of neurons.

However, this resemblance is not very close and to avoid misunderstanings, they are called Arti-
ficial Neural Nets (ANN). '



The application of feedforward networks based upon backpropagation algorithm in Com-
putational Structural Technology (CST) is relatively new in its origin. Rehak et al. (ref. 6)
developed NN models for simulating the dynamic behavior of structures. Troudet and Merrill
(ref. 7) adopted network methodology for estimating fatigue life of structural components.
Berke and Hajela (ref. 8) used ANN for structural analysis and optimization of trusses. Their
use in plate and shell analysis is reported in reference 9. They have shown considerable promise
in material modelirig. Jain et al. (ref. 10) used it to model the tri-axial behavior of soils.
Ghaboussi et al. (ref. 11) have reported the modeling of nonlinear behavior of concrete.

It was suggested in references 8 and 11 that the trained neural networks can be incor-
porated into existing structural analysis programs. The use of nonlinear analysis programs
require an accurate description of material behavior. With the increased complexity in modeling
material behavior, it is becoming necessary to look for new approaches to represent it in a form
which is computationally efficient and can easily be added to the existing stress analysis pro-
grams. The use of ANN seems to be particularly appealing for this type of nonlinear materials
modeling. It allows to capture the material response by training an appropriately configured
network for given material data. Once the network is trained for the desired accuracy a small
data file containing the weights of connections and network biases is saved. It can be used later
on for eliciting proper material response such as stresses for known strains or stress increments
for given strain increments. The next step would be to incorporate this trained NN into a stress

analysis program.

OBJECTIVE OF THE STUDY

The present study is conducted to explore the possibility of training feedforward network
for known material data and then incorporate it into a structural analysis program considering
material nonlinearity. For this purpose, nonlinear elastic analysis of trusses is chosen. The .
material behavior is assumed to be known in the form of equations so that comparison between
the actual material behavior and the one predicted by neural nets is possible for the evaluation
of the effectiveness of the neural network approach. Different trusses are used for analysis to
allow comparison between the different approaches.” ' '

NONLINEAR ELASTIC ANALYSIS OF TRUSSES -

A stiffness based matrix formulation (ref. 12) is used for the analysis of trusses. The joint
equilibrium equations for a truss can be written as: '

K] {u}) = {} . (1)

where [K]| is overall assembled stiffness matrix of truss, {u} and {f} represent the joint displace-
ment vector and joint force vector, respectively, The material behavior is given by the following
equation (ref. 13):



g = Eo<s - 552) for s > 0 2)

o= Eo(e + 532) fore <0

where EO = 200 units

For the equations dimensionally consistent units can be chosen. Due to nonlinear material
behavior in equation (2) the stiffness matrix in equation (1) is a function of displacements {u},
and has to be solved in an iterative manner. The initial stiffness method as suggested in refer-
ence 13 was used. This method saves the updating of the stiffness matrix at each iteration. The
stiffness matrix formulated for the linear elastic case can be used for each iteration. This
method is more stable in comparison to the tangent stiffness method which requires updating of
the stiffness matrix at the beginning of each iteration. However, it suffers from the slow conver-

gence rate at loads near maximum loads.

The total load is applied in n prescribed steps. The equations for the p“l load step and
the itP iteration are:

K] {Au}’} = {r;} (3)

where

(4)

i = {0} - o

The vector {f p} represents the applied joint forces for the pth load step. {Au?} is the
change in the joint displacement vector for the i*h jteration for the load step p. {Ri}'is a resi-
dual force vector showing the error in the joint equilibrium due to the force vector {f; ;} com-
puted from the forces in the members of the truss. The displacements for the i+1 iteration are

updated by the following equation:
o} = 1) + fauf) ®

For the k*® member of the truss the elongations are calculated as follows:
e = (“l - um) cos v — ("l - vm) sin v (6)

1 and m are the end joints of the member k. The u; and u_ are the x-displacements
of joints 1 and m, respectively. Similarly v’s are the joint displacements along the y-
direction. v is the slope of the k" member with respect to the positive x-axis. The strains in
each member of the truss are computed by:



= k=12...,8 (7)

Here 1, is the length of the k" member and s is the total number of members in the

truss. The stresses in each member of the truss can now be computed by using equation (2) or
by the trained neural network. The forces in each member are obtained from these stresses.

The member forces are transformed to obtain the equivalent joint forces to assemble the new {f;}
vector. The residual force vector for the 141 iteration will be:

{Rin} - {fp} - {f.} (8)

The new joint equilibrium equations are:
K] {Au‘i’ H} =Ry} (9)

By using Gauss-Jordan method the incremental displacements are calculated and the pro-
cedure can be repeated as described earlier. To stop the iterative process an error norm given by
the following equation is calculated: ' o

(10)

where & is the rms error, and r is the total number of nonzero joint displacements in the
truss. When the calculated value of rms error & is less than the prescribed tolerance the
iteration process is stopped and the values of the joint displacements, member forces, stresses
and strains are printed. The applied joint loads are incremented for the next load step p+1.
This procedure is repeated until all the load steps are completed.

" ARTIFICIAL NEURAL NETWORK MATERIAL MODELING

Figure 1 shows the neural network configuration. It has one processing element (PE) in
the input layer with strain as the input. The output layer consists of one PE providing the
value of stress. The processing elements in the middle layer also, known as hidden layer, are
varied from 5 to 15 to find an appropriate network configuration which predicts stresses for a -
given strain with the smallest error. The computer program NETS (ref. 14) was used for all the
network training. In the program the backpropagation algorithm was implemented at Lyndon
B. Johnson Space Flight Center of NASA.

For incorporating the neural network model of material behavior in the nonlinear truss
analysis program, two small functions, “init” and “propagate,” were written in C language. The



first one initializes the net while the second one propagates the given input strain to get the
corresponding stress. The output o, of an i*" PE can be obtained as follows:

0 = ————1 (11)

1 + e M
is the input from the

where w;. is the weight of the connection between PE i and PE j. IJ-
jth PE and b, is the bias value in

ni . -
=1

for the i*h PE.

RESULTS AND DISCUSSIONS

To assess the accuracy and to choose an appropriate network configuration for the non-
linear truss analysis several cases listed below were selected for numerical experimentation.

case 1 1-5-1.13 network
case 2 1-10-1.13 network
case 3 1-15-1.13 network
case 4 1-5-1.19 network
case b 1-10-1.19 network

In these cases the first number denotes the number of input units, which is always one.
The second number represents the number of hidden units and it varies from 5 to 15. The third
number which is one in all the cases, is the number of output units. The last number after the
period is the total number of input-output pairs used for network training. These pairs are
obtained from equation (2). All the training data was scaled between 0 and 1 due to the restric-
tion placed by the backpropagation algorithm implemented in the NETS program. Scaling between
0.1 and 0.9 is also customary. All the networks are trained with a maximum error not exceeding
1.8 percent and rms error less than 1 percent. After the training the files containing weights and
biases are saved for each of the network to assess the accuracy of all the neural networks.

The input strains used for training are augmented by additional values of strains from the
stress-strain equation (2) to propagate the data. The predicted values for stresses from neural
nets for these strains are plotted along with the actual stress-strain curves obtained from equa-
tion (2). Figure 2 contains the plots for cases 1 to 3. It shows good prediction capability of all
the cases with case 3 being closest to the actual stress strain curve. Similarly in figure 3, data
from cases 4 and 5 is plotted. Both cases are in good agreement with the known results. Fig-
ure 4 shows the comparison between cases 3 and 4. These two models are very close to the cho-
sen stress-strain curve for the study. It is difficult to select the best case from these plots.
Therefore, for a closer look at the accuracy of the results, percent error in neural network inter-
polations versus strains are plotted on figures 5 to 7. It can be seen from these figures that the
percent error is within £3 percent when the strains used for training are also used for the predic-
tion of stresses. For other value of strains, these errors could be significant. Especially at



the two end points of the stress-strain curve where strain values are nearly +0.2. However, in
nonlinear analysis, truss members do not attain these high values of strains. The other location
where errors in predictions are significant, is near the strain level zero. It should be noted that
‘at these strain levels the actual stress is approaching zero. Any small variation in the prediction
by Neural net causes a large relative percent error because in calculating the percent error, the
difference between the actual and the predicted stress is divided by a stress value which is small
in magnitude. This artificially magnifies the magnitude of the error. This shows that neural
network predictions although very accurate, could be in error at few points and a careful check-
ing is necessary before selecting an appropriate network configuration for materials modeling.

Figure 8 shows four truss geometries with dimensions and applied loading used in this
study. For all these trusses a uniform cross section area of 1 unit magnitude is assumed.
Manual calculations are performed for Trussl and Truss2. The initial stiffness method is imple-
mented in a computer program written in C language to perform the nonlinear elastic truss
analysis. For both cases the nonlinear stress-strain function given by equation (2) is used.
These results for load and load point displacements are plotted on figures 9 and 10. For both of
the trusses the results from the computer program and manual calculations are in close agree-
ment. It shows that the initial stiffness method with incremental solution strategy can be used
for nonlinear analysis purposes. In addition to these calculations, further calculations are done
by dropping the nonlinear term from the equation (2). This results in a linear elastic material.
The incremental solution leads to a straight line response for both of the trusses. This serves as
a further verification of the computer program. In addition to this, it can also be seen from fig-
ures 9 and 10 that there is significant nonlinearity in the responses of the trusses. The initial
stiffness method has been able to capture this nonlinearity without any instability and errors.

The computer program was slightly modified to include functions “init” and “propagate.”
This allows to obtain the nonlinear stress-strain material data from the trained neural networks.
The Trussl is analyzed by this program for cases | to 5. For all calculations 10 load steps and a
tolerance of 0.005 are used. The results for applied load and ioad point displacements for all
these five case are shown on figures 11 and 12. Except for case 1 all other cases show fairly ,
good agreement with the manual calculations. It can be concluded from these figures that 1-5-1.19
net produces the best results. It also leads to the conclusion that use of more input-output
pairs for training the network provide better accuracy. For this problem due to availability of
assumed stress-strain function any number of input-output pairs can be generated for network
training. However, most of the time the material data are available only at discrete points.
Therefore, computer program was slightly changed so that it can use material data supplied in
form of a table. This table was created using the function given by the equation (2). For inter-
mediate points, a linear interpolation scheme was implemented in the computer program. This
case is indicated as linear interpolation on the plots. It more accurately emulates the existing
nonlinear analysis programs in which material data is provided at discrete points. The results
for cases 3 and 4 and from the linear interpolation scheme are shown on figure 13 for Trussl.
The results from case 4 and linear interpolation scheme are very close to exact results. Case 3
was chosen because it had the smallest maximum error of 0.0123 and rms error of 0.0057 among
all other cases after training the network. However these plots show that this network does not
produce the best results for Trussl. This particular network was trained for 23 604 cycles. It is
known that overtraining usually reduces the generalization capability of network models. Over-
all, all the models used, in the study provide adequate approximate solutions. It is encouraging
that the errors noted earlier seems to average out when neural nets are used for material mod-
eling. In situations where material data is available only at few points from experiments, neural
net approximations will be able to provide results within reasonable accuracy.



For Trussl a load of 9.6 units is applied in 10 increments with a tolerance of 0.005. A time
function is used to evaluate the total execution time for all the five cases. These results are
shown on figure 14 along with the case when the exact stress-strain function is used for material
modeling in the computer program. It can be seen that cases 4 and 5 take more time when com-
pared with the similar networks of cases 2 and 3, respectively, that have identical number of hid-
den units. This difference is due to a higher number of iterations needed for convergence. This
also points to a situation in which the best neural net model may not be fastest although it has
the smallest number of hidden units.

Similar calculations are performed for Truss2 and shown on figure 15. Only cases 3 and 4
are used for neural net modeling. Once again the best results for applied load and load point
displacements are produced by case 4 when compared with the exact results from manual calcu-
lations. For this truss the neural net model predicts better results than the linear interpolation
scheme. Figures 16 and 17 show the results for applied load and load point displacements for
Truss3 and Truss4. For both cases it was not possible to perform a manual computation.
Therefore, the results from the initial stiffness program using the stress-strain function given by
equation (2), are considered as the exact solutions. They are also plotted on these figures for
comparison purposes. For both cases 1-5-1.19 net produces extremely accurate results. They are
very close to the results from initial stiffness method. The linear interpolation scheme in both
cases fails to provide accurate solutions. [n this study the stress-strain function used for
material response is a second order parabola. The linear interpolation scheme was not able to
approximate it closely. Tor material behavior with sharper gradients than a parabola this
approximation scheme will further deteriorate. However, as mentioned earlier, this is the most
commonly used scheme in the existing general purpose nonlinear "finite element analysis pro-
grams. These results show that it is prone to errors. It also shows that if neural network
modeling is used carefully extremely accurate results can be obtained. Even in cases where the
model is not chosen carefully, results of reasonable accuracy are attainable. It is anticipated
that for materials with responses more complicated than a parabolic model, linear interpolation
scheme should lead to larger errors. In such cases neural network material modeling can effec-
tively be used in stress analysis problems.

To further investigate the convergence characteristics of all these schemes, maximum load
calculations are done for all four trusses. For manual calculations maximum load is obtained by
choosing the peak points of the load-displacement, plots. Fer initial stiffness method the peak
load is obtained by incrementing the applied loads till the solutions fail to converge. The
unloading part of the load displacement curve can not be calculated from this implementation of
initial stiffness meihod due to incremental loading control. Table I shows that for first three
trusses, neural network is very close to exact maximum loads. The same can be interpreted
from figure 18. This is an indication that neural net material modeling does not appreciably
change the convergence characteristics of initial stiffness method.

The maximum displacements were calculated for applied load levels of 9.6, 20.5, 13.5,
and 12.8 for the trusses by all the suggested schemes. The numerical values are shown in
table II and the results are on chart 19. Neural network models compare favorably with exact
solutions. :

For the previous cases the total execution times are also obtained. They are listed in
table III. They are also shown on figure 20. For the first three trusses the time taken by the two
neural network models and the linear interpolation method are comparable. However, this trend
breaks down for the Truss4. In that case neural net provides accurate solutions but takes more



time to converge to the results as compared to the linear interpolation scheme. These are only a
few cases, and it is difficult to conclude on this basis that neural network material modeling will
take less computer time compared to other approaches. The time taken by the initial stiffness
method using the stress-strain function from equation (2) is the smallest. In this case the func-
tion evaluation is extremely fast because it is in a form of a simple equation. This indicates that
in nonlinear analysis most of the time is taken in obtaining the material response. For large size
nonlinear analysis problems, the choice of appropriate material modeling is very essential to keep
the analysis time within reasonable limits.

© To further investigate the accuracy of neural net modeling with the other techniques, the
forces in the members of the Truss3 are plotted on figures 21 to 24. The member numbering is
shown on figure 8. The applied load was increased in five steps to the maximum value of 13.5 units.
It can be seen that all the techniques produce results very close to the exact solution with NN
models having a slight edge over the linear interpolation scheme.

CONCLUSIONS
From the results and the discussion the following conclusions can be drawn.

1. Neural network material modeling can successfully be implemented in a general purpose
analysis program.

2. The neural network models provide reasonably accurate solutions to the nonlinear elas-
tic analysis of trusses. If the network configuration is chosen with care extremely accurate
solutions are possible.

3. The network trained with larger input-output pairs reproduce the material behavior
more accurately.

4. The linear interpolation scheme for handling the material data is most commonly used
in general purpose nonlinear finite element analysis programs. The neural networks are able to
provide more accurate solutions in comparison to this schernie.

5. The incorporation of neural network material modeling in an analysis program does not
appreciably change the convergence characteristics of the initiel stiffness method.

6. It is not possible to conclude from this study that neural net material modeling will
result in savings in computer time. It is comparable to the linear interpolation scheme.

7. It is anticipated that in case of more complicated material models neural network
approach will be able to provide more accurate results as compared to other schemes.

8. Neural network offers a viable alternative for material modeling. In this approach
material information can be captured in a small file containing weights and biases leading to sig-
nificant data base compression.

9. The network trained with least errors may not provide the most accurate solution to
the analysis problems.



10. More work is needed to establish guidelines for configuring an appropriate network

model. Especially in selecting the number of hidden processing elements. At this time it is
primarily a trial and error process.

10.

11.
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TABLE 1.—PREDICTED MAXIMUM LOAD CAPACITY

OF TRUSSES
Truss number Trussl | Truss2 | Truss3 | Truss4

Manual calculations 10.0 21.478 | - | -ee--

Stress-strain function 10.0 21.478 13.9 13.3

Neural 1-10-1.13 9.8 21.478 13.8 13.0
network

1-5-1.19 9.6 21.478 13.5 12.8

Linear interpolation 10.0 20.5 13.8 13.3

TABLE II.—-MAXIMUM DISPLACEMENTS FOR TRUSSES

Truss pumber Trussl Truss2 Truss3 | Truss4
Applied load 9.6 20.5 13.5 12.8
Stress-strain function 0.799 0.985 2.246 1.176
Neural 1-10-1.13 0.796 0.961 2.223 1.127
network -
1-5-1.19 0.928 1.104 2.444 1.202
Linear interpolation 0.799 1.085 2.335 1.244

TABLE III.—-COMPUTER TIME FOR THE ANALYSIS OF

DIFFERENT TRUSSES
Truss number Trussl | Truss2 | Truss3 | Truss4
Applied load 9.6 20.5 13.5 12.8
Stress-strain function 8.07 15.1 6.1 29.4
Neural 1-10-1.13 16.8 33.67 20.65 77.28
network
1-5-17.19 25.58 42,18 35.32 | 113.15
Linear interpolation 12.52 37.56 13.13 55.75

11




)IOM]SN |ednaN e }Jo uoneunbipuon ayl L'bi4

JakeT indino lsAe" uappiH Jadken jnduj

12



S9SSal}S 10} suoljoipald MIoM]aN |einaN z'614

jsu gi't-Gl-I g 1su g1'{-0l-1 %
1 E=TU I O+ 0 ujdunj ulel}s-SsaNlS .
uiellg
€0 ¢ 0 'O 0 'O~ ¢ 0- €0-
I _ _ T T T Gl -
40L-
- ml
0
— G
= -0l
Gl

SSal1}g

13



€0

S95S8.4}S 10} suoljoipaid MlomlsN |einaN £614

$S94}Q

18U 6L'L-0k-} 19U BLL-G-L 4+  1OUNj UIBJ}S-SSANS .
urens
20 1'0 0 1'0- 2°0- €°0-
| _ _ _ : G-
e oL-
G-
0
g
ol
gl

14



€0

S9SS911S 10} suonoipald yiomiaN |einaN 614

89U g1'1-Gl-l g }8U 6L'L-G-1 4+  }OUNJ Ures}s-SS8NIS .
ures}s
20 1'0 0 1'0- 2'0- €0-
_ : ; _ _ G-
o -
N -
0
- g
Sl

$S94}S

15



€0

suoljejodlajul 19N JeJnaN ul sJolig g'bi
}oU EL'L-Gl-} —g— 19U EL1-0l-} —x—  ¥3U ELL-G-} —o—

¢O 1’0

A

uredig

0 L'O0- ¢’ 0- - €0-

T T T 0¢-

E3 E _ ﬁ K O
0c
ov
09
08

§S911S Pa1OIpald Ul 10143 JUadldd

16



suoljejodialul 18N |ednaN ul siodig g9bi4

19U 6L'L-0b-} —z— 19U 6LI-G-| o

ures}s
€0 20

0] 0 )
| I I ] I
¥ NWM } -

SS94}S Paldolpald Ul J01i] juaoiad

Ol

¢l

17



suoljejodJalul 19N jednaN ul sitodig Lbid
}oU BLL-G- —5— 39U ELL-Gl-| —o—

urens

€0 ¢0 1’0 0 1'0- ¢ 0- £ 0-

0] 8

Sl

0¢

G

$S04}S po12Ipald Ul 10443 Jusdiad

(03

18



3 Truss
v P
— 10—— 10—
_l —
10
L Truss?
P
v
P
4
| 3
10 .
| | > Truss3
- 1
- 10 .

:
4 A A |
3 ! Truss4

Fig.8 Different Configuration
of Trusses

19



LSSNJj 10} juswaoe|dsip wnwixew "SA peo| pallddy 6614
pw SSauins |eljiul ‘Ojed |enuew _ ollSe|d Jesul| .
juswaoe|dsiq |eiXy

9l vl ¢l 2 8°0 90 ¥0 ¢ 0 0
1 I I I I I T O

Ol

2l
peoT |eixy

20



gSSnJi] 4o} juswade|dsip wnwixew "SA peoj pallddy o614

PW SSaUJIIS |el}Iul

¢ Sl

¢ ‘O|ed |enuew _

juswooejdsig WNWIXEW

1

ol}se|o Jeaul| .,

G0

T

peor paijddy

ol

Gl

0c

G¢

21



ISSNni] 10} juswaoe|dsip wnwixew "SA peo| psaljddy |1°bi4

¢l

18U jeunsu gL' -Gl-l ..g-. }8U |eUnau gL'L-0L-1 X

}au [eUNdU §1-G-1 [ 'ojed jenuew _

juawaoejdsiq jeiIxy
80 90 ¥0 20 0

_ _ _ J 0

ol

Al
peoT [eIxy

22



LSSNnJ] Jo} juswaode|dsip wnwixew “SA peo| palddy g1 b4
}9U |eansu 61'L-0L-1 x 18U |eunadu 6L°1°G-| -7-- 0|eO |enuew 4
Juawaoe|dsIq |eIXy
Al ! 80 - 90 ¥°0 20 0
I I I 1 | O

13

Ot

cl

peoT jeIxy

23



ISSNJ] Joj} juswaoe|dsip wnwixew ‘SA peoj paliddy ¢} 614

¢l

uoljejodisju| Jesulql ... }au jeJnsu 6L°L-G-1

}au jeJnau gLL-0k-1 4+ "'Ojeod |enuew _,

juswaoe|dsi(q |eixy

80 90 vo ¢0 0

T T T T %0

peoT [eIxy

Ol

cl

24



LSSNJ] 10} S|OpoW 18N [e4NaN 1USJayIp Woly sawil NdD yi-bid

}3U |eJnau 6L°L°0L-k [] 38U |eInau 6L'1-G-L
}9U |eANaU §L1-0L-L [T] 18U jesnsu g1'l-G-|

Jau [eanau g1'L-Gl-1 N

oz

o€

owl |

25



2ssni] 1o} juswaode|dsip wnwixew ‘sA peo| palddy Gi1-bi4

uoljejodiajuj Jeaul] .g..

18U [BJN3U E1'L-0b-}  +

Juswaoe|dsig wnwWixXepw

1

}8u jeanau 6LL-G-1 %

‘'0|ed |enuew .

peoT paiddy

Ol

Gl

102

G¢c

26



©ssnJi] 10} juswaoe|dsip wnwixew "SA peoj palddy 91614

uoljejodisju] Jeaui| g }8U |BINBU 61'1-G-L  x

}8u |eunau gL'L-0k-1L  + pw ssaujjns jeniul .

juswaoe|dsig wnwixXew
e G'¢ c gl .. b g0 0

| I | I 1

cl

vi

9l
peoT paljddy

27



$SSNJ] 10} juswaode|dsip wnwixew ‘SA peo| paljddy /1614

vl

uonjejodiaju] Jeaull 18U [eunau 6L'L-G-1  x

}9U |B4NdU ELL-Ob-} - pw SSaujjis iUl .

AycoEwom_aw_o wnwixew
2 80 90 v'0

I | I 1

peo paiddy

Ol

¢l

vi

28



Maximum Load

25
20
10

29

ey
()]
c
‘©
Y
3
o
o
™
-
-
[}
o
i
~—
I3
c
3
i
£
3]
or
)}
1
2]
72}
2
»n
\

B manual calculations
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Linear Interpolation

Fig.18 Predicted maximum load capacity

from different material models
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Fig.21 Compressive force in member 1 and 2 of Truss3
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